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Abstract 

The study examines Autoregressive Integrated Moving Average modeling of Nigeria Inflation 
Rate before and early part of COVID-19 Era (1996-2020). The study seeks to determine the 

trend in the movement of inflation within the period under investigation, to identify the 
appropriate form of the model, in the order of Autoregressive, Moving Average and its 
differencing component and how it fits to Nigeria inflation rate, and examine the forecasting 

ability of the selected ARIMA model. In order to fit the ARIMA model to the data, unit root 
test, the autocorrelation and partial autocorrelation function were conducted to determine 

the stationary level of the series and also to identify the appropriate order of the AR and MA 
models. The data used in this study were extracted from the Central Bank of Nigeria 
statistical online data base. It spanned from January, 1996 to May, 2020. We conclude from 

the result of the analysis that the best fitted model for the data was ARIMA (I, I, I). 
Recommendations were made in the study based on the result of the findings. 
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INTRODUCTION 

In trying to examine the Nigerian economy and its many challenges, it is imperative to give 

adequate attention to inflation as its behavioral characteristics has tremendous influence on 
other economic variables like exchange rate, lending rate to mention a few. More so, as it 
makes government, investors and the general public become anxious as the price of goods 

and services continue to increase over time. The problems associated with inflation can better 
be understood by attempting to define it.  

Inflation is a process of continuous rise in prices of goods and services or on the other hand, 
continuous devaluation of money over a time period. During the corona virus era countries 
were and are still struggling with the challenge of reducing inflation as many manufacturing 

industries and other economic activities were shut down to contain the spread.  
 

Therefore, it is imperative to direct attention to the corona virus (covid-19) pandemic which 
made Nigeria to implement social distancing, lockdowns and travel restrictions which could 
result to large scale shocks to both demand and supply. According to Diewert and Fox 

(2020), these sudden changes in expenditure pattern introduce significant bias in the 
consumer price index (CPI) used to measure inflation as noted. 

 
The real-time effect of the global lockdown on production, employment and consumption or 
consumer expenditure have been widely documented. However, much less is known about 

how much influence or effect the corona virus crisis has on the characteristics inflation rate 
experienced in Nigeria. Mallory (2018) opined that single equation models like the ARIMA 

are generally used in a forecasting context.  
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A proper statistical model should express inflation rate as coming from a single stationary 
probability distribution which is normally distributed with mean and variance. Less obvious 

is that the mean of this series is or might be changing over time. To correct for a changing 
mean or correlation over time in the inflation rate series, an autoregressive integrated moving 

average (ARIMA) model can be used (Mallory, 2018). 
 ARIMA models did not initially enjoy widespread use in the business community, mostly 
due to the difficult, time consuming and highly subjective procedure described by Box and 

Jenkins to identify the proper form of the model for a given data set. It is however, the 
benchmark against which the other time series methods will be compared.  

 
Forecasting a time series like inflation rate is often of tremendous commercial value. In most 
manufacturing companies, it drives the fundamental business planning, procurement and 

production activities. Any error in forecasting will ripple down throughout the supply chain. 
So, in order to save costs and improve efficiency it is important to get the forecasts accurate. 

Not only in manufacturing, the techniques and concepts behind time series forecasting are 
applicable in any business environment. This study therefore, the aim of the study was to 
provide empirical evidence of the impact of inflation rate on microeconomic variables before 

and during the early part of the covid 19 Era in Nigeria. The specific the objectives include 
to; 

determine the trend in the movement of inflation within the period under investigation, 
Identify the appropriate form of the model, the order of AR, MA and the differencing 
component, determine an appropriate ARIMA model for modelling inflation rate, use the 

monthly inflation rate data in Nigeria to evaluate and examine forecasting ability of the 
appropriate ARIMA model.   

 

METHODOLOGY 

This chapter focused mainly on the approaches and techniques employed in arriving at the 

results and they include the following: 
 

3.1 Source of Data/Software Used for Data Analysis  
The data used for this study was extracted from the central Bank of Nigeria statistical data 
base website www.cbn.gov.ng. The variables used was monthly data on Nigeria inflation rate 

within the period January 1996 to May 2020. The software used for the data analysis is 
Eview version 10 released by IHS Markit (2020). 

 

3.2 Model Specification  
A model is a simplified system used to simulate some aspect of the real economy. The 

method specified for this study is the Box-Jenkins approach (Box and Jenkins 1976) which 
accommodates the Autoregressive Integrated Moving Average (ARIMA) model. ARIMA 

model attempts to identify patterns in the historical data and decomposes it into an 
autoregressive (AR) process, where there is a memory of past events’ an integrated (I) 
process which accounts for stabilizing or making the data stationary, making it valid for 

forecast; and a Moving Average (MA) of the forecast error, such that the longer the historical 
data, the more accurate the forecast will be as it leans over time. ARIMA model therefore has 

three model parameters, the AR (P) process, I(d) process and the MA (q) process, all 
combined and interacting with each other which later recomposed into an ARIMA (p.d.q) 
model. 

 
3.3    Autoregressive (AR) Model 

http://www.cbn.gov.ng/
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The first component, AR term uses the p lags of a time series to improve forecast. The AR 
part of ARIMA indicates that the evolving variable of interest is regressed on its own lagged 

(prior) values. An AR (p) model has the form shown in equation 1  

 y
t
 = µ + 

1 yt-1 + 
2 yt-2  +… +  

p
 y

t-p + 
t
      (3.1) 
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Where;  
yt     =  The response (dependent) variable being forecasted at time t  
y

t-1
     =  The lag of the series or the response variable at time lag (Stimulus)  


1,…, p =  Are the coefficient of lag that the model estimates  

µ              =  Is the intercept term also estimated by the model  

 t           =  Error term at time t 
This equation demonstrates that the forecast value of inflation at time t depends on its value 

in the previous time period and a constant.  
 
3.4 Moving Average (MA) Model 

The third component the MA (q) model uses the q lags of forecast errors to improve the 
forecast. The MA part indicates that the regression error is a linear combination of error terms 

whose values occurred contemporaneously and at various times in the past. An MA (q) model 
has the form shown in equation 2 

yt  = βo+ β1 t-1 + β2 t-2 + … + βq t-q +  t           (3.2) 

=    


 
q

i
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Where: 

yt  = The response (dependent) variable being forecasted at time t  
β0  =  The constant mean of the process 
β1, β2, …βq  =  The coefficient to be estimated  

 t  =  is the error term at time t  

 t-1,  t-2, …,  t-q =  the error in previous time period that are incorporated in the response yt . 

This equation indicates that y at time t is equal to a constant plus a moving average of the 
current and past white noise error terms. But if no differencing occurred to make it stationary 

then an ARMA model is generated with d equal zero. 
 
3.4 Autoregressive Moving Average (ARMA) 

The autoregressive moving average refers to the model with p autoregressive terms and q 
moving average terms. An autoregressive (AR) and moving averaging (MA) is ARMA (p,q) 

if it is stationary as shown in equation 3   

       (3.3) 

 

3.4.1  Integral Order (I) 

The second component is the integrated stochastic process. A time series is integrated of the 

first order, I (1), if it has to be differenced once to make it stationary. In general, if a time 
series has to be differenced d times to make it stationary, that time series is said to be 
integrated of order d, denoted as I(d), (Gujarati, 2003). 
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3.5       Autoregressive Integrated Moving Average (ARIMA)  

ARIMA (p,d,q) Model  

To create an ARIMA model, we begin by combining or adding both the autoregressive (AR) 
process, the moving average (MA) process and the integrated part (I) together as shown in 

equation (3.4) 

 yt = µ +  t + 1yt-1 + 2yt-2 +…+ pyt-p + β 1 t-1 + β 2 t-2 +…+ βq t-q  (3.4) 
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In summary ARIMA (p,d,q) model can be specified using the backshift operator as 

                            tt

d
BYBB  1)(          

    
The model in equation 3.4 can be written in words to mean predicted inflation at time t equal 
constant plus white noise term plus linear combination lags of inflation at time t (up to p lags) 

plus linear combination of lagged forecast errors (up to q lags).  
 

3.6 Model Identification 

Identification methods are rough procedures applied to a data set to indicate the kind of 
representational model, which is worthy of further investigation. The aim is to identify an 

appropriate sub class of models from the general ARIMA family. The autocorrelation 
function (ACF), partial autocorrelation function (PACF) and the resulting correlograms 

which are simply the plots of the ACF and PACF against the lag length are principal tools 
used for identification process. They are used to help guess the form of model and also to 
obtain approximate estimates of the parameters.   

 

3.6.1  Autocorrelation Function (ACF) 

One simple test of stationarity is based on the so-called autocorrelation function (ACF). The 

ACF at lag k, denoted by 
k
 is defined by equation (3.5)  
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        (3.5) 

 

Note that if k = 0, ρₒ = 1 

Since both covariance and variance are measured in the same units of measurement. k is a 

unit less, or pure number. It lies between -1 and +1 as any correlation coefficient does. 
The coefficient of correlation between two values in a time series is called the autocorrelation 

function (ACF). The ACF for a time series yt  is given as shown in equation (3.6) 
 Corr(y

t
, y

t-k
 ), k =1, 2         (3.6)  

 
This value of k is the time gap being considered and is called the lag. A lag 1 autocorrelation 
(k = 1) is the correlation between values that are one time period apart. The autocorrelation 

function is a rough indicator of whether a trend is present in the series. A slow decay in ACF 
is indicative of a large characteristics root, a true unit root process or a trend stationary 
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process. Formal test can help to determine whether a system contains a trend and whether the 
trend is deterministic or stochastic. 

 
The ACF identifies the order of MA: Non-zero at lag q, zero for lag > q. It tells us how many 

MA terms are required to remove any autocorrelation in the stationary series. Auto 
correlation is a type of serial dependence. Specifically, autocorrelation is when a time series 
is linearly related to a lagged version of itself. Autocorrelation is useful because its presence 

gives important information about the variable and potential problems with the model. 
According to Nosedal (2019), the ACF is an excellent tool in identifying the order of MA(q) 

process because after lag q it is expected to cut off. However, the ACF is not as useful in the 
identification of the AR(p) process for which it will most likely have a mixture of exponential 
decay and damped sinusoid expressions. Hence such behaviour, while indicating that the 

process might have an AR structure, fails to provide further information about the order of 
such structure. It is therefore important to define and employ the partial autocorrelation 

(PACF) of a time series. 
 
3.4.2 Partial Autocorrelation Function (PACF) 

The partial auto correlation function (PACF) identifies the order of the autoregressive process 
(AR): Non zero at lag p; zero for lags > p. This function plays an important role in data 

analysis aimed at identifying the extent of the lag in an autoregressive model. Box, Jenkins, 
Reinsel (2008). For an AR model, the theoretical PACF “shut off” past the order of the 
model. The phrase “shut off” means that in theory the partial autocorrelations are equal to 0 

beyond that point. Put differently, the number of non-zero partial autocorrelation gives the 
order of the AR model. By the order of the model’ we mean the most extreme lag of x that is 

used as a predictor. 
 
For a time, series, the hth order partial autocorrelation is the partial correlation of yi with    yi-

h, conditional on yi-1, …. yi-h+1 as shown in equation (3.7)    
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The first order partial autocorrelation is therefore the first-order autocorrelation. The 
correlogram (also called auto correlation function ACF plot or Autocorrelation plot) helps 

gives us a visual picture of the serial correlation in data that changes over time (i.e time series 
data). Correlogram can give you a good idea of whether or not pairs of data show 

autocorrelation. They cannot be used for measuring how large that autocorrelation is. The 
correlogram and Augmented Dickey Fuller test allows us to find the appropriate value of 
(p,d.q) 

 

3.6 Model Estimation  

There are two methods suggested in  Box, et al (2008) for estimating parameters of the 
ARIMA model and they include:  the maximum likelihood estimation method and ordinary 
least square (OLS) estimation  

 

3.7.1 Maximum Likelihood Estimation  

Maximum likelihood estimation (MLE) is a method of estimating the parameters of a 
probability distribution by maximizing a likelihood function, so that under the assumed 
statistical model the observed data is most probable. 
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Consider the linear regression model in equation (3.8) 

Yt = totb 1x   (t = 1, ….,T)                                                                                  (3.8) 

Where (yt, 
1xt
) are iid, the regressors are stochastic, 1xt

 is the tth – row of the x matrix, and 

 t/xt ~ iid. N (O, 2

t )  

It follows that;    

yt/xt ~ iid. N( 1xt
bₒ, 2

t )  

The exact likelihood function of the linear regression model is defined in equation 9 

L (y;x; o) =  


T

t

ottt yL
1

,x,                                                                             (3.9) 

Where; 
Lt is the (exact) likelihood function for observation t.  

Lt (yt, xt, o) = fyt/xt (yt/xt, o) xfxt (xt) 

The exact likelihood function is given in equation 10 

L(y, x, o) =   
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If fₓ does not depend on δₒ  
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and the conditional log-likelihood function is given by equation 14 
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3.7.2 Ordinary Least Square (OLS) Estimation  

The ordinary least square estimation is a statistical procedure to find the best fit for a set of 
data points by minimizing the sum of squares of residuals made in the result of every single 

equation. AR (1) estimation; 
Let (xt) be a covariance – stationary process defined by the fundamental representation 

(// < 1). 

xt = xt-1 +  t                                                                                                                                                                      (3.15) 

Where ( t) is the innovation process of (xt) 

The ordinary least square estimation of  is defined in equation 16 to be 
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MA (1) estimation; 

Let (xt) be a covariance – stationary process defined by the representation (//<1) 

Xt =  t +  t-1 

Where ( t) is the innovation process of (xt). 
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The ordinary least square estimator is defined as having minimum variance. An estimator that 
is unbiased and has the minimum variance of all other estimators is the best and most 

efficient.  
 

 

 

3.8 Model Estimation Steps    

3.8.1 Time Plot 

A time plot or time series graph displays observations (data) against time and it is good in 

showing how data changes over time. Evidence of seasonality is often evident from the time 
plot. 
 

3.8.2  Descriptive Statistics 

Descriptive statistics is used to test for normality and the test statistics is determine using 

Jarque Bera formula as shown (3.17). This is determine using both descriptive statistic of 
Skewness and kurtorsis. 

x2 = 
 








 


4

3

6

2

2 k
S

N
                                                                                                  (3.17) 

Where; 

N  =  is the number of sample or size of the variable  
K  =  Kurtosis  

S  =  Skewness statistics  
 
The hypothesis for a descriptive test statistic is given as thus; 

Ho:  Normally distributed versus  
HA:   Not normally distributed  

 
3.8.3  Unit Root Test  

There are various statistical tests that can be performed to describe the time series data. One 

test of stationarity (no stationarity) that has gained popularity in recent years is the unit root 
test. A time series is said to be stationary if it doesn’t increase or decrease with time linearly 

or exponentially (no trend), and if it doesn’t show any kind of repeated patterns (no 
seasonality) or if there is no presence of unit root. Mathematically, this is described as having 
constant mean and constant variance over time. The most basic approach for understanding 

this is to plot the data and check if there’s any hint at the presence of underlying trends or 
seasonality. The stationarity test will utilize the Augmented Dickey-Fuller (ADF) technique 

(Dickey-Fuller, 1981).  

xi,t  = Kxi,t-1 + 


 
n

k

tkktiki

1

,,x,                                                                             (3.18)  

An anatomy of an ADF equation will be  

xi,t  = The 1st differenced value of x  

Kxi,t-1 = The 1st lagged value of x  





n

k

ktiki

1

,x,  = These are the nth lagged of 1st differenced of value of x 

k,t = The error term  

 

3.9 Model Selection Technique  



International Journal of Applied Science and Mathematical Theory E- ISSN 2489-009X P-ISSN 2695-1908,  

Vol 7. No. 2 2021 www.iiardjournals.org 

 

  IIARD – International Institute of Academic Research and Development 

 

Page 29 

One of the techniques for selecting a good model is the use of Akaike information criteria 
(1973) to compare different models on a given outcome. The best model is then the model 

with the lowest AIC score. Akaike (1973) showed that the selection of the “best” model is 
determined by an AIC score as shown in equation 19  

AIC = 2k – 2log   yL /̂                                                                                           (3.19) 

 

Where K is the number of estimable parameters (degree of freedom) and log L y/̂  is the 

log likelihood of its maximum point of the model estimated and the constant 2 remains for 
historical reasons (Burnham and Anderson, 2002).  

 

3.10   Diagnostic Check 

This is done after choosing a particular ARIMA model and also estimated its parameters, it is 
important to know whether the chosen model fits the data set reasonably. One easy test of the 
chosen model is to see if the residuals estimated from this model are white noise. If they are, 

we can accept the particular fit, if not, we just have to start over again. 
 

3.11 Forecasting 

Making predictions of the future based on past and present data is an essential part of time 
series analysis. Forecasting is done by taking into account events in the past and present to 

predict what will happen in the future. The forecast is done by constructing the Root Mean 
Square Error (RMSE) using the residuals of the estimated models. The study utilized the 

RMSE to determine and or predict horizons of the estimated model as shown in equation 20 

RMSE  =
n

yy
M

i

ii





1
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                                                                                     (3.20)
 

 

Where; 
2













ii
yy = difference squared  

n = Sample size  

 
Flow Chart    on Box-Jenkings Methodology 
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RESULTS.  
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Figure. 1:  Time Series Plot for the Raw Data 

 
 

This shows that there was a continuous increase in inflation across the period under 
investigation. More so, the increase from May 2019 to May 2020 was very rapid.   In other to 
detrend the increasing inflation rates, the raw series of the data was differenced to remove 

unit root and also to ensure stationarity in the series 
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Figure.2:     Time Plot for the differenced Series  
 
This is the time plot of the log transformed raw series as shown in figure1 was done to 

determine the presence of trend and unit root. The log transformation was done to deal with 
the issue of skewed data, increase in the variability of the data and make the data conform 

more closely to normal distribution. The time plot shows an upward trend from January 1996 
to May 2020 
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Figure.3: Correlogram of the differenced Series 

 
Figure 3 is the correlogram of the first difference of the log transformed data. This was done 

to determine the autocorrelation and partial autocorrelation coefficient of the first set of lags.  
Therefore, the tentative models were selected based on spikes on the autocorrelation function 
and partial autocorrelation function of the correlogram. The spikes were significant at lag 1, 

lag 4, lag 6, lag 7, lag 11 and lag 12. 
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Table 1:   Estimated Results for the ARIMA Models  

 

Model Constant   (C ) AR(y) MA(β) ϒ AIC SIC Least 

AIC 

ARIMA (1,1,1)  4.406 
(0.611) 

 0.999 
(0.000) 

 0.379 
(0.000) 

 0.000 
(0.000) 

-5.469 -5.418 -5.469 

ARIMA (4,1,4)  4.397 

(0.000) 

 0.999 

(0.000) 

 0.489 

(0.000) 

 0.002 

(0.000) 

-3.206 -3.156  

ARIMA (6,1,6)  4.423 

(0.000) 

 0.998 

(0.000) 

 0.247 

(0.000) 

 0.004 

(0.000) 

-2.507 2.456  

ARIMA (7,1,7)  4.436 
(0.000) 

 0.997 
(0.000) 

 0.377 
(0.000) 

 0.005 
(0.000) 

-2.362 -2.311  

ARIMA(12.1,12)  4.433 

(0.000) 

 0.993 

(0.000) 

 0.677 

(0.000) 

 0.008 

(0.000) 

-1.772 -1.722  

ARIMA (1,1,4)  4.402 
(0.227) 

 1.000 
(0.000) 

 0.183 
(0.001) 

 0.000 
(0.000) 

-5.311 -5.261  

ARIMA (4,1,6)  4.410 
(0.000) 

 0.000 
(0.000) 

 0.169 
(0.001) 

 0.002 
(0.000) 

-3.086 -3.036  

ARIMA (6,1,4) 4.399 
(0.000) 

 0.997 
(0.000) 

 0.765 
(0.000) 

 0.003 
(0.000) 

-2.878 -2.828  

ARIMA (6,1,1) 4.427 

(0.000) 

 0.999 

(0.000) 

 1.000 

(0.148) 

 0.001 

(0.000) 

-3.634 -3.584  

ARIMA (7,1,6)  4.430 
(0.000) 

 0.997 
(0.000) 

 0.333 
(0.000) 

 0.005 
(0.000) 

-2.311 -2.341  

AR1MA (6,1,7)  4.427 

(0.000) 

 0.998 

(0.000) 

 0.320 

(0.000) 

 0.004 

(0.000) 

-2.548 -2.498  

ARIMA (12,1,1)  4.441 

(0.000) 

 0.996 

(0.000) 

 1.000 

(0.688) 

 0.004 

(0.000) 

-2.534 -2.514  

ARIMA (7,1,12)  4.419 
(0.000) 

 0.997 
(0.000) 

 0.597 
(0.000) 

 0.004 
(0.000) 

-2.589 -2.539  

ARIMA (12,1,7)  4.440 

(0.000) 

 0.994 

(0.000) 

 0.796 

(0.000) 

 0.058 

(0.000) 

-2.085 -2.034  

ARIMA (6,1,12)  4.411 
(0.000) 

 0.998 
(0.000) 

 0.574 
(0.000) 

 0.003 
(0.000) 

-2.788 -2.738  

ARIMA (12,1,6)  4.434 
(0.000) 

 0.997 
(0.000) 

 0.987 
(0.000) 

 0.004 
(0.000) 

-2.415 -2.365  

ARIMA (4,1,12)  4.400 
(0.000) 

 0.999 
(0.000) 

 0.540 
(0.000) 

 0.002 
(0.000) 

-3.390 -3.339  

 

Table 1 is the model estimated results for the ARIMA model. Thirteen ARIMA models were 
estimated based on suspected spikes on the autocorrelation function and partial 

autocorrelation function suggesting the following combinations of those models shown in 
table 4.3. In selecting the best ARIMA model for modeling inflation rate in Nigeria between 
January 1996 to May 2020, all the estimated ARIMA models were subjected to Akaike 

information (AIC) and Schwarz information criteria (SIC). The result shows that ARIMA (1, 
1, 1) is preferred to others since it has the least value of AIC and SIC. 

 
In table 4.3, ARIMA (1, 1, 1) indicates that the coefficients AR (1) and MA (1) were highly 
significant at 0,05% level of significance. The AIC (-5.467) and SIC (-5,413) were the lowest 

value when compared to others. The impact of volatility in the selected model is significant 
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and is at 0.023%. For the goodness of fit test, the adjusted R-square and R-square were 1.000 
and 1.000 respectively and this simply means that about 100% of the variation in inflation in 

Nigeria is explained by past values of inflation rate and past errors obtained from its 
residuals. The Durbin Watson statistic (1.834) was greater than the value of the R-square, this 

simply means that there was little or no trace of evidence to conclude that there is the 
presence of serial correlation in the selected model.  The inflation rate time series of the 
selected ARIMA (1,1,1) process can be described as 

 

y
t    

=  4.406  +  0.999  yt-1 
 +   0.379  t-1 

 
Out of sample forecast was generated for the month of June 2020 to March 2021 as shown in 

table 2 
 
Table 2: Forecasting Performance of ARIMA (1,1,1) 

Date Predicted Observed 

Jun-20 0.0001389  0.3899994 
Jul-20 0.0001389  0.4899998 

Aug-20 0.0001389  0.2800007 
Sep-20 0.0001389  1.2300000 

Oct-20 0.2099659  0.6599998 
Nov-20 -0.9760849  0.9300003 

Dec-20 0.9244578  0.3299999 
Jan-21 -0.2308346 -0.1900005 

Feb-21  0.8298905 -0.4399986 
Mar-21  0.6060707 -0.4200001 

        

Conclusion 

This study investigated ARIMA modelling of Nigeria inflation rate before and during the 

early part of covid-19 era. To achieve the aim of the study, four objectives and research 
questions were set to guide the study and the objectives include, to determine the trend in the 
movement of inflation within the period under investigation, identify the appropriate form of 

the model, the order of AR, MA and the differencing component, determine an appropriate 
ARIMA model for modelling inflation rate and use the monthly inflation rate data in Nigeria 

to evaluate and examine forecasting ability of the appropriate ARIMA model.   

 
The results show that there was clearly evidence of an upward trend in the movement of 

inflation rate and inflation equation also shows evidence that inflation rate is high within the 
period under investigation. The movement of inflation rate between November 2019 to May 

2020 is significantly different from other period under investigation as the rise in inflation 
rate is very rapid, with little or no fluctuation as seen in figure 1. Therefore, the real time 
effect of covid-19 characterized by global lockdown on production and other economic 

activities had influence on inflation rate pattern between November 2019 to May 2020. The 
series correlogram allowed us to choose appropriate order of AR and MA parameter as AR 
(1) and MA (1) with a first difference d (1). Therefore, ARIMA (1,1,1) is the most 

appropriate model for modelling inflation rate in Nigeria. However, model diagnostic check 
was carried out to check the robustness of the model. The result shows no presence of 

heteroscedasticity and there was no serial correlation in the residual obtained from the model. 
To evaluate and examine the forecasting ability of ARIMA (1,1,1), out of sample forecast 
was generated from the month of June 2020 to March 2020.  
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